Localization of P2X3 receptors and coexpression with P2X2 receptors during rat embryonic neurogenesis.
نویسندگان
چکیده
It is well known that extracellular ATP mediates rapid excitatory signaling by means of the ionotropic P2X receptors. One of its subunits, the P2X(3) receptor, is well documented to be associated with sensory innervation in adult animals. It is speculated that the P2X(3) receptor may have already been present in the early sensory system. The aim of this study was to investigate the distribution of the P2X(3) receptor during neurogenesis by using immunohistochemistry on rat embryos from embryonic day (E)9.5-18.5. The P2X(3) receptor was first identified in the hindbrain neural tube and the sensory ganglia in E11-11.5 embryos. At E14.5, the optic tract and retina, nucleus tractus solitarius, mesencephalic trigeminal nucleus, and sensory nerves in both respiratory and digestive tract showed positive staining. The facial nucleus, the prepositus hypoglossal nucleus, and the sympathetic ganglia also showed P2X(3) immunoreactivity, even though these are not sensory associated. P2X(3) immunoreactivity was detected in the vestibular nucleus, the nerves in mesentery, bladder, and kidney in E16.5 and in nerves in vibrissae in E18.5. P2X(3) immunoreactivity in the facial nucleus, spinal trigeminal tract, the mesencephalic trigeminal nucleus, and the vestibular nucleus were undetectable in postnatal day 16 rat brainstem. The P2X(3) receptor was coexpressed with the P2X(2) receptor in nucleus tractus solitarius, dorsal root ganglion, nodose ganglion, and the taste bud in E16.5 embryo, which was 5 days later than the first appearance of the native P2X(3) receptor. In summary, we present a detailed expression pattern of the P2X(3) receptor during neurogenesis and report that P2X(3) immunoreactivity is down-regulated in early postnatal brainstems.
منابع مشابه
Expression of P2X purinoceptors during rat brain development and their inhibitory role on motor axon outgrowth in neural tube explant cultures.
Extracellular ATP is well known as a neurotransmitter and neuromodulator in the CNS of adults. However, little is known about the involvement of ATP during the development of mammalian brain. In the present study, we have examined the expression pattern of P2X receptor subtype mRNA and protein during perinatal rat brain development (from embryonic day (E) 10 to postnatal day (P) 16 brain). Whil...
متن کاملRole of ectodomain lysines in the subunits of the heteromeric P2X2/3 receptor.
Lysine residues near each end of the receptor ectodomain (in rat P2X2 Lys69 and Lys308) have been implicated in ATP binding to P2X receptors. We recorded membrane currents from human embryonic kidney cells expressing P2X subunits and found that lysine-to-alanine substitutions at equivalent positions in the P2X3 receptor (Lys63 and Lys299) also prevented channel function. Heteromeric P2X2/3 rece...
متن کاملACCELERATED COMMUNICATION Role of Ectodomain Lysines in the Subunits of the Heteromeric P2X2/3 Receptor
Lysine residues near each end of the receptor ectodomain (in rat P2X2 Lys 69 and Lys) have been implicated in ATP binding to P2X receptors. We recorded membrane currents from human embryonic kidney cells expressing P2X subunits and found that lysine-to-alanine substitutions at equivalent positions in the P2X3 receptor (Lys 63 and Lys) also prevented channel function. Heteromeric P2X2/3 receptor...
متن کاملSubtype-specific mechanisms for functional interaction between α6β4* nicotinic acetylcholine receptors and P2X receptors.
P2X receptors and nicotinic acetylcholine receptors (nAChRs) display functional and physical interactions in many cell types and heterologous expression systems, but interactions between α6β4-containing (α6β4*) nAChRs and P2X2 receptors and/or P2X3 receptors have not been fully characterized. We measured several types of crosstalk in oocytes coexpressing α6β4 nAChRs and P2X2, P2X3, or P2X2/3 re...
متن کاملSubtype-Specific Mechanisms for Functional Interaction between a6b4* Nicotinic Acetylcholine Receptors and P2X Receptors
P2X receptors and nicotinic acetylcholine receptors (nAChRs) display functional and physical interactions in many cell types and heterologous expression systems, but interactions between a6b4-containing (a6b4*) nAChRs and P2X2 receptors and/or P2X3 receptors have not been fully characterized. We measured several types of crosstalk in oocytes coexpressing a6b4 nAChRs and P2X2, P2X3, or P2X2/3 re...
متن کاملMol093179 263..274
P2X receptors and nicotinic acetylcholine receptors (nAChRs) display functional and physical interactions in many cell types and heterologous expression systems, but interactions between a6b4-containing (a6b4*) nAChRs and P2X2 receptors and/or P2X3 receptors have not been fully characterized. We measured several types of crosstalk in oocytes coexpressing a6b4 nAChRs and P2X2, P2X3, or P2X2/3 re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of comparative neurology
دوره 443 4 شماره
صفحات -
تاریخ انتشار 2002